1. Aké, L., Godino, J. D., Gonzato, M., & Wilhelmi, M. R. (2013). Proto-algebraic levels of mathematical thinking. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 1–8). Kiel: PME.
2. Artigue, M. (1989). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.
3. Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizont: Knowing mathematics for teaching to learnes’ mathematical futures. Paper presented at the 43RdJahrestagung Für Didaktik Der Mathematik Held in Oldenburg, Germany.
4. Ball, D. L., Lubienski, S. T. & Mewborn, D. S. (2001). Research on teaching mathematics: the unsolved problem of teachers’ mathematical knowledge. En V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433–456). Washington, DC: American Educational Research Association.
5. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389–407.