1. Akatufba, A. H., & Wallace, J. (1999). Mathematical dimensions of students’ use of proportional reasoning in high school physics. School Science & Mathematics, 99(1), 31–41.
2. Andrich, D., De Jong, J., & Sheridan, B. E. (1997). Diagnostic opportunities with the Rasch model for ordered response categories. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 59–70). New York, NY: Waxmann.
3. Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and proportion. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 296–333). McMillan.
4. Bolt, D. M., Kim, J.-S., Blanton, M., & Knuth, E. (2016). Applications of item response theory in mathematics education research. In A. Izsak, J. Remillard, & J. Templin (Eds.), Psychometric methods in mathematics education: Opportunities, challenges, and interdisciplinary collaborations (pp. 31–52). National Council of Teachers of Mathematics.
5. Bond, T. G., & Fox, C. M. (2013). Applying the Rasch model: Fundamental measurement in the human sciences. Psychology Press.