Geologically based integrated approach for zonation of a Late Jurassic–Early Cretaceous carbonate reservoir; a case from Persian Gulf

Author:

Asadi Alireza,Rahimpour-Bonab HossainORCID,Aleali Mohsen,Arian Mehran

Abstract

AbstractIn this study, our attempt is to integrate sedimentological and petrophysical data for reservoir evaluation in the sequence stratigraphic framework. Petrographic analysis of the Late Jurassic–Early Cretaceous Fahliyan Formation reservoirs of two oilfields in the northwest of the Persian Gulf led to recognition of twelve microfacies. They can be classified into four facies associations, including open marine, shoal, lagoon and tidal flat, which are deposited in a homoclinal ramp carbonate. Sequence stratigraphy of the studied successions led to the recognition of three third-order depositional sequences based on vertical changes in microfacies and gamma ray analysis. Except for the upper boundary of the third sequence, the other sequence boundaries are type I (SBT.1). Dissolution is the most important diagenetic feature that affected the lower depositional sequence which is caused by the development of subaerial exposure after the deposition of the Fahliyan Formation, whereas cementation is the main diagenetic feature affecting the second- and third depositional sequences, causing their lower reservoir quality. In order to identify the flow units, the flow zone index methods, porosity throat radius (R35) and modified Lorenz based on stratigraphy were applied. The key wells studied in this area have shown good correlation throughout the studied oilfields which may potentially be used for hydrocarbon exploration and field development in the Late Jurassic–Early Cretaceous deposits of the Persian Gulf. This study integrates geological and petrophysical data (rock typing) toward sequence stratigraphic framework.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3