The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data

Author:

Opuwari Mimonitu,Ubong Moses Okon,Jamjam Simamkele,Magoba Moses

Abstract

The present study uses core data to group reservoirs of a gas field in the Bredasdorp Basin offshore South Africa into flow zones. One hundred and sixty-eight core porosity and permeability data were used to establish reservoir zones from the flow zone indicator (FZI) and Winland’s methods. Storage and flow capacities were determined from the stratigraphy-modified Lorenz plot (SMLP) method. The effects of the mineralogy on the flow zones were established from mineralogy composition analyses using quantitative X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Results reveal five flow zones grouped as high, moderate, low, very low, and tight reservoir rocks. The high flow zone is the best reservoir quality rock and has porosity and permeability values ranging from 12 to 20% and 100 to 1000 mD. The high and moderate zones contribute more than 60% of each well’s flow capacities. The moderate and low flow zone extends laterally to all the wells. The tight flow zone is an impervious rock and has the lowest rock quality with porosity and permeability values less than 8% and 1 mD, respectively. This zone contributes less than 1% to flow capacity. The impact of minerals on flow zones is evident in plagioclase and muscovite content increases. An accompanied decrease in quartz content is observed, which implies that low plagioclase content ≤4% and muscovite content of ≤1% corresponds to the low, moderate, and high flow zones, while plagioclase content of ≥4% and muscovite content of ≥1% belong to the tight flow zone. Consequently, the quantity of plagioclase and muscovite can be used as a proxy to identify better quality reservoir rocks. The diagenetic process that reduces the rock quality can be attributed to quartz overgrowth and the accumulation of mica flakes in the pore spaces. In contrast, the fracture in the high flow zone is the reservoir quality enhancing process. The flow zones are generally controlled by a combination of facies and diagenetic factors.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3