Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir

Author:

Bagheri Hassan,Tanha Abbas AyatizadehORCID,Doulati Ardejani Faramarz,Heydari-Tajareh Mojtaba,Larki Ehsan

Abstract

AbstractOne of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated using poroelastic equations. The strike-slip to normal fault regime was shown by calculated in situ stress values. The 1-D geomechanical model was utilized to investigate the failure mechanisms and safe mud window estimation using the Mohr–Coulomb failure criterion. Using density and sonic (compressional and shear slowness) logs, the acoustic impedance (AI) and reflection coefficient (RC) logs were determined subsequently. The combination of layers with different AI indicates positive and negative values for the RC, zones prone to shear failure or breakout, and the mud weight in these zones should be increased, according to the interpretation of the AI and RC readings and the results of the geomechanical model. Furthermore, the zones with almost constant values of AI log and values close to zero for RC log are stable as homogeneously lithologically, but have a lower tensile failure threshold than the intervals that are sensitive to shear failure, and if the mud weight increases, these zones are susceptible to tensile failure or breakdown. Increased porosity values, which directly correspond with the shear failure threshold and inversely with the tensile failure threshold, cause AI values to decrease in homogenous zones, but have no effect on the behavior of the RC log. This approach can determine the potential zones to kick, loss, shear failure, and tensile failure in a short time.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3