Analyzing in situ stresses and wellbore stability in one of the south Iranian hydrocarbon gas reservoirs

Author:

Sobhani Alireza,Kadkhodaie Ali,Nabi-Bidhendi Majid,Tadayoni Mehdi

Abstract

AbstractThis study aims to analyze in situ stresses and wellbore stability in one of the Iranian gas reservoirs by using well log data, including density, sonic (compressional and shear slowness), porosity, formation micro-image (FMI) logs, modular formation dynamics tester (MDT), and rock mechanical tests. The high burial depth, high pore pressure, and strike-slip stress regime of the field require an optimal design of geomechanical parameters based on an integrated data set consisting of static and dynamic data, which is available for this study. Firstly, poroelastic modulus and vertical stress were calculated. Afterward, the Eaton’s equation was used to estimate pore pressure from well logging data. The geomechanical parameters were also calibrated through the interpretation of image data, the use of the modular formation dynamics tester (MDT), and laboratory rock mechanic tests. Employing poroelastic equations, the lowest and highest horizontal stresses were calculated. It was shown that the maximum horizontal stress and minimum horizontal stress correspond to sigma H and sigma h, indicating the strike-slope fault regime. The findings of this research indicated that the equivalent mud weight (EMW) resulted in 10–13 ppg suitable for the Kangan Formation and 11–14 ppg suitable for the Dalan Formation. Additionally, the well azimuth in the NE-SW direction provided the best stability for drilling the encountered formations. Therefore, the results of this study serve as cost-effective tools in planning adjacent wells in carbonate formations of gas field to predict the wellbore stability and safe mud window.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractures Reactivation Modeling due to Hydrocarbon Reservoirs Depletion;Geotechnical and Geological Engineering;2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3