Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms

Author:

Rajabi Meysam,Hazbeh Omid,Davoodi Shadfar,Wood David A.,Tehrani Pezhman Soltani,Ghorbani HamzehORCID,Mehrad Mohammad,Mohamadian Nima,Rukavishnikov Valeriy S.,Radwan Ahmed E.

Abstract

Abstract Shear wave velocity (VS) data from sedimentary rock sequences is a prerequisite for implementing most mathematical models of petroleum engineering geomechanics. Extracting such data by analyzing finite reservoir rock cores is very costly and limited. The high cost of sonic dipole advanced wellbore logging service and its implementation in a few wells of a field has placed many limitations on geomechanical modeling. On the other hand, shear wave velocity VS tends to be nonlinearly related to many of its influencing variables, making empirical correlations unreliable for its prediction. Hybrid machine learning (HML) algorithms are well suited to improving predictions of such variables. Recent advances in deep learning (DL) algorithms suggest that they too should be useful for predicting VS for large gas and oil field datasets but this has yet to be verified. In this study, 6622 data records from two wells in the giant Iranian Marun oil field (MN#163 and MN#225) are used to train HML and DL algorithms. 2072 independent data records from another well (MN#179) are used to verify the VS prediction performance based on eight well-log-derived influencing variables. Input variables are standard full-set recorded parameters in conventional oil and gas well logging data available in most older wells. DL predicts VS for the supervised validation subset with a root mean squared error (RMSE) of 0.055 km/s and coefficient of determination (R2) of 0.9729. It achieves similar prediction accuracy when applied to an unseen dataset. By comparing the VS prediction performance results, it is apparent that the DL convolutional neural network model slightly outperforms the HML algorithms tested. Both DL and HLM models substantially outperform five commonly used empirical relationships for calculating VS from Vp relationships when applied to the Marun Field dataset. Concerns regarding the model's integrity and reproducibility were also addressed by evaluating it on data from another well in the field. The findings of this study can lead to the development of knowledge of production patterns and sustainability of oil reservoirs and the prevention of enormous damage related to geomechanics through a better understanding of wellbore instability and casing collapse problems. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3