An NMR-based model for determining irreducible water saturation in carbonate gas reservoirs

Author:

Heidary MohammadORCID

Abstract

AbstractUnambiguously determining irreducible water saturation $$\left({S}_{\rm{wirr}}\right)$$ S wirr poses a formidable challenge, given the availability of multiple independent methods. Traditional approaches often depend on semi-experimental relationships derived from simplified assumptions. These methods, originally designed for oil sandstone reservoirs, result in varying $${S}_{{\text{wirr}}}$$ S wirr values when employed in carbonate gas reservoirs. Nuclear magnetic resonance (NMR) is the most advanced technique for determining $${S}_{{\text{wirr}}}$$ S wirr . While highly accurate, the NMR-based method necessitates the laboratory measurement of the transverse relaxation time $$\left({T}_{2}\right)$$ T 2 cutoff. Laboratory-based $${T}_{2}$$ T 2 cutoff determination is resource-intensive and time-consuming. This research aims to develop a robust model for determining $${S}_{{\text{wirr}}}$$ S wirr in carbonate gas reservoirs by utilizing NMR well logging measurements and special core analysis (SCAL) tests. Various $${T}_{2}$$ T 2 cutoff values were initially employed to compute bound water saturation $$\left({S}_{{\text{bw}}}\right)$$ S bw at different depths to achieve this. Subsequently, the data points $$\left({T}_{2}, {S}_{{\text{bw}}}\right)$$ T 2 , S bw were graphed on a scatter plot to unveil the relationship between $${S}_{{\text{bw}}}$$ S bw and $${T}_{2}$$ T 2 . The scatter plot illustrates an exponential decrease in $${S}_{bw}$$ S bw with increasing $${T}_{2}$$ T 2 , forming the basis for the $${S}_{{\text{wirr}}}$$ S wirr model derived from this relationship. Finally, the parameters of the $${S}_{{\text{wirr}}}$$ S wirr model were fine-tuned using SCAL tests. Notably, this $${S}_{{\text{wirr}}}$$ S wirr model not only accurately yields $${S}_{{\text{wirr}}}$$ S wirr at each depth but also offers a dependable determination of the optimal $${T}_{2}$$ T 2 cutoff for the reservoir interval.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3