A simple NMR methodology for evaluating filter cake properties and drilling fluid-induced formation damage

Author:

Adebayo Abdulrauf R.ORCID,Bageri Badr S.

Abstract

AbstractAn efficient drilling fluid will form a filter cake that will minimize the drilling fluid invasion into any drilled formation. Drilling fluid must therefore be adequately evaluated in the laboratory prior to field trial. Filter cake properties such as thickness, porosity, permeability, and pore structure are frequently evaluated using several techniques such as CT scan, SEM, and XRF. However, each of these techniques can evaluate only one or two filter cake properties. This paper presents a simple but novel NMR technique to evaluate filter cake properties such as thickness, pore volume, porosity, and possibly permeability. Furthermore, the amount and particle size distribution of solids that invaded a given rock sample can be obtained using the same technique. The full procedure was tested and verified using four identical rock samples. Drilling fluid invasion and filter cake deposition experiments were conducted on each of the samples, using the same drilling fluid but four different concentrations of fluid loss additive. NMR T2 relaxation measurements were taken at three different stages of each rock sample: before filter cake deposition; after fluid invasion and filter cake deposition; and after filter cake removal. A material balance analysis of the probability density function and cumulative distribution function of the measured T2 profile at the different stages of each sample yielded multiple filtration loss properties of the filter cake. The results obtained showed high accuracy of the NMR versus the current techniques. Moreover, this current method evaluated the majority of the filter cake properties at the same time and in situ hence eliminated the need of using multi-procedures that disturb the sample state. Finally, the presented method can also be used to evaluate secondary damage associated with filter cake removal process.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3