Application of machine and deep learning techniques to estimate NMR-derived permeability from conventional well logs and artificial 2D feature maps

Author:

Masroor Milad,Emami Niri MohammadORCID,Rajabi-Ghozloo Amir Hossein,Sharifinasab Mohammad Hassan,Sajjadi Mozhdeh

Abstract

AbstractNuclear magnetic resonance (NMR) logs can provide information on some critical reservoir characteristics, such as permeability, which are rarely obtainable from conventional well logs. Nevertheless, high cost and operational constraints limit the wide application of NMR logging tools. In this study, a machine learning (ML)-based procedure is developed for fast and accurate estimation of NMR-derived permeability from conventional logs. Following a comprehensive preprocessing on the collected data, the procedure is trained and tested on a well log dataset, with selected conventional logs as inputs, and NMR-derived permeability as target, shallow and deep learning (DL) methods are applied to estimate permeability from selected conventional logs through artificial production of NMR-derived information from the input data. Three supervised ML algorithms are utilized and evaluated, including random forest (RF), group method of data handling (GMDH), and one-dimensional convolutional neural network (1D-CNN). Additionally, a modified two-dimensional CNN (named as Residual 2D-CNN) is developed which is fed by artificial 2D feature maps, generated from available conventional logs. The hyper-parameters of the ML and DL models are optimized using genetic algorithm (GA) to improve their performances. By comparing the output of each model with the permeability derived from NMR log, it is illustrated that nonlinear machine and deep learning techniques are helpful in estimation of NMR permeability. The obtained accuracy of RF, GMDH, 1D-CNN and Res 2D-CNN models, respectively, is 0.90, 0.90, 0.91 and 0.97 which indicate that Res 2D-CNN model is the most efficient method among the other applied techniques. This research also highlights the importance of using generated feature maps for training Res 2D-CNN model, and the essential effect of the applied modifications (i.e., implementing residual and deeper bottleneck architectures) on improving the accuracy of the predicted output and reducing the training time.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3