Rock typing based on hydraulic and electric flow units for reservoir characterization of Nubia Sandstone, southwest Sinai, Egypt

Author:

El-Sayed Abdel Moktader A.,Sayed Nahla A. El,Ali Hadeer A.,Kassab Mohamed A.,Abdel-Wahab Salah M.,Gomaa Moataz M.

Abstract

AbstractThe present work describes and evaluates the reservoir quality of the sandstone of the Nubia Formation at the Gebel Abu Hasswa outcrop in southwest Sinai, Egypt. Hydraulic flow unit (HFU) and electrical flow unit (EFU) concepts are implied to achieve this purpose. The Paleozoic section made up of four formations has been studied. The oldest is Araba Formation followed by Naqus formations (Nubia C and D) overlay by Abu Durba, Ahemir and Qiseib formations (Nubia B), where the Lower Cretaceous (Nubia A) is represented by the Malha Formation. The studied samples have been collected from Araba, Abu Durba, Ahemir and the Malha formations. The hydraulic flow unit (HFU) discrimination was carried out based on permeability and porosity relationship, whereas the electrical flow unit (EFU) differentiation was carried out based on the relationship between formation resistivity factor and porosity. Petrographic investigation of the studied thin sections illustrates that the studied samples are mainly quartz arenite. Important roles to enhance or reduce the pore size and/or pore throats controlling the reservoir petrophysical behavior are due to the diagenetic processes. The present study used the reservoir quality index (RQI) and Winland R35 as additional parameters applied to discriminate the HFUs. The study samples have five hydraulic flow units of different rock types, where the detected electrical flow units are only three. The differences between them are may be due to the cementation process with iron oxides that might act as pore filling, lining and pore bridging, sometimes bridges helping to decrease permeability without serious reduction in porosity. The reduction between the number of EFUs and HFUs comes from the effect of diagenesis processes which is responsible for a precipitation of different cement types such as different clay minerals and iron oxides.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3