Effect of fiber on the rheological properties of gelled acid

Author:

Gou BoORCID,Zeng Mingyong,Wang Kunjie,Li Xiao,Guo Jianchun

Abstract

AbstractDegradable fiber is widely used to assist gelled acid diversion and reduce acid leak-off in the acid stimulation of carbonate hydrocarbon reservoirs in Sichuan Basin of China. The rheological properties of an acid system will affect the geometry of the acid-etching fracture. However, the effect of fiber on the rheological properties of gelled acid is not yet clear. This paper investigates the rheological properties of gelled acid with various fiber concentrations at different temperatures. The results show that when the temperature is less than the degradable temperature of the fiber, the apparent viscosity of gelled acid rises gradually with an increase in fiber concentration, while the fiber has no significant effect on the viscosity of gelled acid at the degradable temperature. The dissolution process of fiber in gelled acid experiences none-dissolution, surface dissolution, dissolution and fining, and a complete dissolution stage from low to high temperatures, which all have different effects on gelled acid viscosity. The fiber links more gelling agent molecules of gelled acid together to form a quasi-network structure between the fiber and fiber and the fiber and polymer, which results in a rise in the viscosity of gelled acid. The acid system also shows a strong shear thinning property under different temperatures and fiber concentrations. However, the power-law index n of this acid system always maintains a steady average value of about 0.181, while the change pattern of consistency index K is similar to the change in viscosity with varying fiber concentrations and temperatures. The research results are useful for acid fracturing treatment design in carbonate reservoir.

Funder

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Sichuan Postdoctoral Special Fund

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3