Two-Level Self-Thickening Mechanism of a Novel Acid Thickener with a Hydrophobic-Associated Structure during High-Temperature Acidification Processes

Author:

Li Peng1,Wang Lei1,Lai Xiaojuan12,Gao Jinhao1,Dang Zhiqiang1,Wang Rong3,Mao Fan4,Li Yemin5,Jia Guangliang5

Affiliation:

1. Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science & Technology, Xi’an 710021, China

2. Shaanxi Agricultural Products Processing Technology Research Institute, Xi’an 710021, China

3. National Experimental Teaching Demonstration Center of Light Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

4. College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

5. Sinopec Huabei Petroleum Engineering Co., Ltd., Zhengzhou 450006, China

Abstract

Two acid thickeners, ADMC and ADOM, were prepared by aqueous solution polymerization using acrylamide (AM) and methacryloyloxyethyl trimethyl ammonium chloride (DMC) as raw materials, with or without the introduction of octadecyl polyoxyethylene ether methacrylate (OEMA). It was characterized by FTIR, 1H NMR, and the fluorescence spectra of pyrene. The double-layer thickening mechanism of ADOM was proved by comparing the thickening and rheological properties of ADMC and ADOM tested by a six-speed rotary viscometer and a HAKKE MARSIV rheometer during the acidification process. The results showed that the synthetic product was the target product; the first stage of the self-thickening ADOM fresh acid solution during high-temperature acidification was mainly affected by Ca2+ concentration, and the second stage of self-thickening was mainly affected by temperature. The residual viscosity of the 0.8 wt% ADOM residual acid solution was 250, 201.5, and 61.3 mPa·s, respectively, after shearing at 90, 120, and 150 °C for 60 min at a shear rate of 170 s−1. The thickening acid ADOM with a hydrophobic association structure has good temperature resistance and shear resistance, which can be used for high-temperature deep-well acid fracturing. In addition, no metal crosslinking agent was introduced in the system to avoid damage to its formation, and ADOM exhibited good resistance to Ca2+, which could provide ideas for the reinjection of the acidizing flowback fluid. It also has certain advantages for environmental protection.

Funder

Service Program for Foreign Experts of China

Key R&D Plan Projects in Shaanxi Province of China

Special Project of the Department of Education of Shaanxi

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3