A new assessment of perforation skin factor for vertical perforated wells in near-wellbore region

Author:

Abobaker Ekhwaiter E. R.ORCID,Elsanoose AbadelhalimORCID,Khan FaisalORCID,Rahman Mohammad AzizurORCID,Aborig Amer,Noah Khalid,Butt Stephen

Abstract

AbstractThe perforating technique is one of the well completion methods and a final stage that helps connect reservoir formation to wellbore during hydrocarbon production. The present work aimed to determine the effect of the perforated casing completion on the pressure gradient and perforation skin factor in the vertical near-wellbore region. This work presented a novel experimental approach for studying the effect of perforation parameters on hydrocarbon production by creating a prototype representing the near-wellbore region. The study conducted extensive laboratory testing to create two prototype artificial samples for a cylindrical near-wellbore region, open hole, and perforated casing sample. An experimental test was carried out using a geotechnical radial flow setup to measure the differential pressure in the two samples; the single-phase (water) was radially injected into the core sample within the same flow boundary conditions. Numerical simulation and statistical analysis were used to expand the investigation of the effect of the dimensions and distribution of perforations on the perforation skin factor and the pressure gradient in the cylindrical near-wellbore region. The results showed a clear view of the effect of the perforations’ parameters on the pressure gradient in the vertical near-wellbore region. In addition, two novel correlations were produced from statistical analysis that simplified the estimation of the perforation skin factor in the perforated casing completion. This study will help to clarify and understand the effect of perforation parameters on well productivity.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3