Comparison of Crushed-Zone Skin Factor for Cased and Perforated Wells Calculated with and without including a Tip-Crushed Zone Effect

Author:

Abobaker Ekhwaiter1ORCID,Elsanoose Abadelhalim1ORCID,Khan Faisal1ORCID,Rahman Mohammad Azizur2ORCID,Aborig Amer1,Butt Stephen1

Affiliation:

1. Memorial University of Newfoundland, St. John’s NL, Canada

2. Texas A&M University at Qatar, Doha, Qatar

Abstract

A number of different factors can affect flow performance in perforated completions, such as perforation density, perforation damage, and tunnel geometry. In perforation damage, any compaction at the perforation tunnels will lead to reduced permeability, more significant pressure drop, and lower productivity of the reservoir. The reduced permeability of the crushed zone around the perforation can be formulated as a crushed-zone skin factor. For reservoir flow, earlier research studies show how crushed (compacted) zones cause heightened resistance in radially converging vertical and horizontal flow entering perforations. However, the effects related to crushed zones on the total skin factor are still a moot point, especially for horizontal flows in perforations. Therefore, the present study will look into the varied effects occurring in the crushed zone in relation to the vertical and horizontal flows. The experimental test was carried out using a geotechnical radial flow set-up to measure the differential pressure in the perforation tunnel with a crushed zone. Computational fluid dynamics (CFD) software was used for simulating pressure gradient in a cylindrical perforation tunnel. The single-phase water was radially injected into the core sample with the same flow boundary conditions in the experimental and numerical procedures. In this work, two crushed zone configuration scenarios were applied in conjunction with different perforation parameters, perforation length, crushed zone radius, and crushed zone permeability. In the initial scenario, the crushed zone is assumed to be located at the perforation tunnel’s side only, while in the second scenario, the crushed zone is assumed to be located at a side and the tip of perforation (a tip-crushed zone). The simulated results indicate a good comparison with regard to the two scenarios’ pressure gradients. Furthermore, the simulations’ comparison reveals another pressure drop caused by the tip crushed zone related to the horizontal or plane flow in the perforations. The differences between the two simulations’ results show that currently available models for estimating the skin factor for vertical perforated completions need to be improved based on which of the two cases is closer to reality. This study has presented a better understanding of crushed zone characteristics by employing a different approach to the composition and shape of the crushed zone and permeability reduction levels for the crushed zone in the axial direction of the perforation.

Funder

Qatar National Research Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Productivity method of evaluating gun perforating;T. Alle

2. Joint bullet and jet perforation tests (progress report);R. Krueger

3. An overview of formation damage and well productivity in oilfield operations;R. Krueger

4. New, generalized criteria for determining the level of underbalance for obtaining clean perforations;S. Tariq

5. Optimum underbalance for the removal of perforation damage;I. C. Walton

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3