Drilling data quality improvement and information extraction with case studies

Author:

Geekiyanage Suranga C. H.,Tunkiel Andrzej,Sui Dan

Abstract

AbstractData analytics is a process of data acquiring, transforming, interpreting, modelling, displaying and storing data with an aim of extracting useful information, so that decision-making, actions executing, events detecting and incidents managing can be handled in an efficient and certain manner. However, data analytics also meets some challenges, for instance, data corruption due to noises, time delays, missing and external disturbances, etc. This paper focuses on data quality improvement to cleanse, improve and interpret the post-well or real-time data to preserve and enhance data features, like accuracy, consistency, reliability and validity. In this study, laboratory data and field data are used to illustrate data issues and show data quality improvements with using different data processing methods. Case study clearly demonstrates that the proper data quality management process and information extraction methods are essential to carry out an intelligent digitalization in oil and gas industry.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3