Polyelectrolyte–nanocomposite for enhanced oil recovery: influence of nanoparticle on rheology, oil recovery and formation damage

Author:

Sowunmi Akinleye O.,Efeovbokhan Vincent E.,Orodu Oyinkepreye D.,Oni Babalola A.

Abstract

AbstractGum arabic (GA) capacity as an enhanced oil recovery (EOR) agent is studied and compared to the commonly applied xanthan gum (XG). FTIR and TGA characterisation of these two polyelectrolytes and a rheology study by viscosity measurement was conducted on their polymeric and nano-polymeric solution at varying concentrations of the polymers and nanoparticles (NP). Coreflooding experiments were conducted based on a sequence of waterflooding and three slugs of increasing concentration of polymeric (and nano-polymeric) solutions to evaluate EOR performance. Results show similar rheology and oil recovery for 1.0 wt% GA and a 0.1 wt% XG polymeric solution. And the viscosity of GA tends to be Newtonian at a relatively high shear rate. The magnitude of incremental oil recovery of the first slug is independent of the GA concentration but significant for XG. However, the impact of nano-polymeric solution on oil recovery is higher than the polymeric solution. The increase in NP concentration played a vital role in oil recovery, thereby connoting the significance of IFT, contact angle, and its associated mechanisms for EOR. And FTIR affirms that the hydroxyl group in XG is less than GA, thus responsible for adsorption of GA compared to XG.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3