Plasma-Functionalized Water: from Bench to Prototype for Fresh-Cut Lettuce

Author:

Schnabel UtaORCID,Handorf Oliver,Stachowiak Joerg,Boehm Daniela,Weit Christoph,Weihe Thomas,Schäfer Jan,Below Harald,Bourke Paula,Ehlbeck Joerg

Abstract

AbstractFresh-cut produce like lettuce may contain a very high microbial load, including human pathogens. Therefore, the need for antimicrobial agents at post-harvest stages to mitigate microbial cross-contamination and growth is evident. Sanitation based on non-thermal plasma (NTP) reveals innovative food processing possibilities by application at different points along the food chain, for production, modification, and preservation, as well as in packaging of plant- and animal-based food. The aim of the present study was to evaluate the applicability of plasma-treated water (PTW) as antimicrobial process water additives for washing in fresh-cut lettuce processing. Antibacterial activities of PTW the natural occurring microflora of lettuce were examined. Different process variants of PTW application inside the washing process were investigated. Fresh-cut lettuce were investigated regarding microbiological safety and food quality. Samples were analyzed for antimicrobial and metabolic activity as well as metabolic vitality to prove food safety. The investigations for food quality included color and texture analyses and nitrate concentration detection in fresh tissue as well as microscopic measurements by scanning electron microscopy (SEM) and atomic force microscopy (AFM) for tissue surface structure and transmission electron microscopy (TEM) for cell organelle investigations. The application of PTW allowed up to 5 log10 cycle reduction, depending on the process variant and scale (lab and pilot scale). The increase of antimicrobial activity was accompanied by a reduction of metabolic activity, but not consequently by a decrease in metabolic vitality. Food quality was not affected by the use of PTW in the washing process of the fresh-cut lettuce. The promising results in color and texture were supported by the results of the microscopic assays. These promising results may lead to an industrial application of PTW as process water additive in fresh-cut produce processing to reduce the microbial load on the food surface and in addition in the process water or on food processing surfaces.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3