Conditional Knockout of IL-1R1 in Endothelial Cells Attenuates Seizures and Neurodegeneration via Inhibiting Neuroinflammation Mediated by Nrf2/HO-1/NLRP3 Signaling in Status Epilepticus Model

Author:

Wu Lianlian,Zhu Yuhua,Qin Ying,Yuan Honghua,Zhang Lingzhi,Lu Tianyuan,Chen Quangang,Hu AnkangORCID

Abstract

AbstractStudies on the bench and at bedside have demonstrated that the process of epileptogenesis is involved in neuroinflammatory responses. As the receptor of proinflammatory cytokine IL-1β, IL-1β type 1 receptor (IL-1R1) is reported to express abundantly in the endothelial cells in epileptic brains, which is deemed to be implicated in the epileptogenic process. However, whether and how endothelial IL-1R1 modulates neuroinflammatory responses in the pathological process of epileptic seizures and/or status epilepticus (SE) remains obscure. Here, we indicated endothelial IL-1R1 is involved in neuroinflammation, facilitating epilepsy progress via Nrf2/HO-1/NLRP3. In vitro, we observed upregulation of inflammatory cytokines in co-culture model under IL-1β challenge, as well as in BV2 cells after stimulation with conditional medium (CM) from IL-1β-stimulated bEnd.3 cells. In vivo, mice with conditional knockout of endothelial IL-1R1 (IL-1R1-CKO) were generated by hybrid IL-1R1flox/flox mice with Tek-Cre mice. IL-1R1-CKO reduced seizure susceptibility in kainic acid (KA)-induced SE model. In addition, IL-1R1-CKO KA mice exhibited lessened hippocampal neuroinflammation, mitigated neuronal damage, and decreased abnormal neurogenesis. In cognitive behavioral tests, IL-1R1-CKO KA mice presented improvement in learning and memory. Furthermore, we also indicated blockage of endothelial IL-1R1 downregulated the expressions of Nrf2/HO-1/NLRP3 pathway-related proteins. Nrf2-siRNA reversed the downregulation of HO-1, NLRP3, caspase-1, and IL-1β. These results demonstrated CKO of endothelial IL-1R1 reduces seizure susceptibility and attenuates SE-related neurobehavioral damage by suppressing hippocampal neuroinflammation via Nrf2/HO-1/NLRP3.

Funder

Natural Science Research Project for Universities of Jiangsu Province

Key R&D Plan for Technological Innovation in Xuzhou City

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3