Insight into the Neuroprotective Effect of Genistein-3′-Sodium Sulfonate Against Neonatal Hypoxic-Ischaemic Brain Injury in Rats by Bioinformatics

Author:

Xie Ting,Shuang Liyan,Liu Gaigai,Zhao Shanshan,Yuan Zhidong,Cai Hao,Jiang Lixia,Huang ZhihuaORCID

Abstract

Abstract Therapeutic hypothermia (TH) is the only intervention approved for the treatment of neonatal hypoxic-ischaemic encephalopathy (HIE), but its treatment window is narrow (within 6 h after birth), and its efficacy is not ideal. Thus, alternative treatments are urgently needed. Our previous studies showed that genistein-3′-sodium sulfonate (GSS), a derivative of genistein (Gen), has a strong neuroprotective effect in rats with ischaemic stroke, but its role in HIE is unclear. A hypoxia–ischaemia (HI) brain injury model was established in neonatal male Sprague‒Dawley (SD) rats. Twenty-four hours after reperfusion, rats treated with GSS were assessed for cerebral infarction, neurological function, and neuronal damage. RNA-Seq and bioinformatics analysis were used to explore differentially expressed genes (DEGs) and regulated signalling pathways, which were subsequently validated by Western blotting and immunofluorescence. In this study, we found that GSS not only significantly reduced the size of brain infarcts and alleviated nerve damage in rats with HIE but also inhibited neuronal loss and degeneration in neonatal rats with HIE. A total of 2170 DEGs, of which 1102 were upregulated and 1068 were downregulated, were identified in the GSS group compared with the HI group. In an analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, the downregulated DEGs were significantly enriched in the pathways “Phagosome”, “NF-κB signalling”, and “Complement and coagulation cascades”, amongst others. Meanwhile, the upregulated DEGs were significantly enriched in the pathways “Neurodegeneration”, “Glutamatergic synapse”, and “Calcium signalling pathway”, amongst others. These results indicate that GSS intervenes in the process of HIE-induced brain injury by participating in multiple pathways, which suggests potential candidate drugs for the treatment of HIE. Graphical Abstract

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Graduate Innovative Special Fund Projects of Jiangxi Province

Innovation Team Foundation of Gannan Medical University

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3