Histone Deacetylase 3 Inhibition Decreases Cerebral Edema and Protects the Blood–Brain Barrier After Stroke

Author:

Lu Hui,Ashiqueali Ryan,Lin Chin I,Walchale Aashlesha,Clendaniel Victoria,Matheson Rudy,Fisher Marc,Lo Eng H.,Selim Magdy,Shehadah AmjadORCID

Abstract

AbstractWe have previously shown that selective inhibition of histone deacetylase 3 (HDAC3) decreases infarct volume and improves long-term functional outcomes after stroke. In this study, we examined the effects of HDAC3 inhibition on cerebral edema and blood–brain barrier (BBB) leakage and explored its underlying mechanisms. Adult male Wistar rats were subjected to 2-h middle cerebral artery occlusion (MCAO) and randomly treated i.p. with either vehicle or a selective HDAC3 inhibitor (RGFP966) at 2 and 24 h after stroke. Modified neurological severity scores (mNSS) were calculated at 2 h, 1 day, and 3 days. H&E, Evans blue dye (EBD) assay, and fluorescein isothiocyanate (FITC)-dextran were employed to assess cerebral edema and BBB leakage. Western blot for matrix metalloproteinase-9 (MMP9), MMP-9 zymography, and immunostaining for HDAC3, GFAP, Iba-1, albumin, aquaporin-4, claudin-5, ZO-1, and NF-kB were performed. Early RGFP966 administration decreased cerebral edema (p = 0.002) and BBB leakage, as measured by EBD assay, FITC-dextran, and albumin extravasation (p < 0.01). RGFP966 significantly increased tight junction proteins (claudin-5 and ZO-1) in the peri-infarct area. RGFP966 also significantly decreased HDAC3 in GFAP + astrocytes, which correlated with better mNSS (r = 0.67, p = 0.03) and decreased cerebral edema (r = 0.64, p = 0.04). RGFP966 decreased aquaporin-4 in GFAP + astrocytes (p = 0.002), as well as, the inflammatory markers Iba-1, NF-kB, and MMP9 in the ischemic brain (p < 0.05). Early HDAC3 inhibition decreases cerebral edema and BBB leakage. BBB protection by RGFP966 is mediated in part by the upregulation of tight junction proteins, downregulation of aquaporin-4 and HDAC3 in astrocytes, and decreased neuroinflammation.

Funder

National Institute on Aging

Beth Israel Deaconess Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3