Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: an In Vitro Study

Author:

Sahab-Negah Sajad,Ariakia Fatemeh,Jalili-Nik Mohammad,Afshari Amir R.,Salehi Sahar,Samini Fariborz,Rajabzadeh Ghadir,Gorji AliORCID

Abstract

AbstractUsing a novel curcumin-loaded niosome nanoparticle (CM-NP), the present study was designed to evaluate the effect of curcumin on human glioblastoma stem-like cells (GSCs). CM-NP has a diameter of ~ 60 nm and a zeta potential of ~ − 35 mV with a constant physicochemical stability. The cytotoxic effects of free curcumin (CM) and CM-NP were investigated on GSCs obtained during the removal of a brain tumor. Both CM and CM-NP caused a dose-dependent decrease in cell proliferation and viability of GSCs. The IC50 values of CM and CM-NP on GSCs were 50 and 137 μg/ml after 24 h, respectively. CM-NP exerted significantly higher effects on GSC viability, apoptosis, cell cycle arrest, and the expression of Bax, a pro-apoptotic marker, compared with CM. In addition, the migration of GSCs was significantly impaired following the administration of CM-NP compared with CM. Furthermore, CM-NP significantly increased the values of reactive oxygen species and decreased the mRNA expressions of NF-κB and IL-6 of GSCs compared with CM. Our data also revealed that CM-NP could significantly reduce the invasiveness of GSCs compared with CM, possibly via MCP-1-mediated pathways. In addition, CM-NP exhibited a significantly greater inhibitory effect on colony formation of GSCs compared with CM. These data indicate that CM-NP exhibited stronger anti-tumor effects on GSCs than CM. Although further in vivo investigations are warranted, our results suggest that CM-NP could be an ideal carrier to deliver curcumin for potential therapeutic approaches into glioblastoma.

Funder

Iran National Science Foundation

National Institute for Medical Research Development

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3