Reconstruction of the evolution phases of a landslide by using multi-layer back-analysis methods

Author:

Innocenti AgneseORCID,Pazzi Veronica,Borselli Lorenzo,Nocentini Massimiliano,Lombardi Luca,Gigli Giovanni,Fanti Riccardo

Abstract

AbstractBack analysis is the most common method to study landslide movements after the event, and it allows us to understand how a landslide evolved along the slope. This paper presents the back-analysis of the Pomarico landslide (Basilicata, Italy) that occurred on January 25th, 2019, on the southwestern slope of the Pomarico hill. The landslide, of rotational clayey retrogressive type—planar sliding, evolved in different phases until it caused a paroxysmal movement in the early afternoon on January 29th, 2019. The landslide caused the collapse of a bulkhead (built at the end of the twentieth century) and of some buildings along the village’s main road. In this paper, a multi-layer back-analysis study is presented, based on the limit equilibrium model (LEM), applying the solution proposed by Morgenstern and Price in Geotechnique 15(1):79–93zh, (1965) and implemented in the freeware software SSAP 2010. The analysis allowed the reconstruction of the entire landslide evolution, using geotechnical parameters obtained from both laboratory and in situ tests, and data from the literature. The application of multilayer back-analysis made it possible to avoid the homogenisation of the layers, modelling the event according to the real conditions present on the slope. The use of the SSAP software made it possible to curb the problem related to the theoretical limitation of the shape of the rupture surfaces, by evaluating independently the friction angle locally and by discarding all those surfaces, which, due to this problem, presented a non-reliable factor of safety (FS) value. The modelling revealed a slope that is highly unstable as the height of the water table changes. The FS calculated under water table conditions close to ground level was less than 1 (FS = 0.98), simulating the first landslide movement (November 2018). The subsequent model reconstructed the critical surface responsible for the January 2019 movement and calculated the FS present on the slope (FS = 1.01). Eventually, the paroxysmal event on January 29th, 2019, was modelled, returning an FS of 0.83, and a sliding surface that sets below the bulkhead, causing its failure. Furthermore, the modelling of the slope in the presence of adequate retaining structures demonstrated the (non-) effectiveness of the retaining wall system represented by the bulkhead. The proposed method of analysis suggests further applications in similar complex multi-layer soil-structure interaction scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3