Life span of a landslide dam on mountain valley caught on seismic signals and its possible early warnings

Author:

Yang Che-Ming,Chang Jui-Ming,Hung Chi-Yao,Lu Chih-Heng,Chao Wei-AnORCID,Kang Keng-Hao

Abstract

AbstractOutburst flooding after a landslide dam breach causes global fatalities and devastation. Information on the timing, magnitude, and location of the landslide dam is crucial to hazard assessment. Despite recent efforts, successful real-time detection of landslide dams in mountain valleys and dam breakages is rare. Here, we present a series of seismic analysis including landslide detection, identification of landslide dam formations, and monitoring of dam breaches. We show the working of our analysis on a recent landslide dam that occurred in eastern Taiwan. The results indicate that our seismic analysis provides important information on the location and magnitude of landslides and the dam forming based on data acquired from a regional broadband seismic network. Furthermore, we see that the failure of the landslide dam is directly caught by the riverside seismic signals. To provide warning times for impending floods to downstream areas, we believe that proximal high-quality seismic signals along the river channel are viable options for an operational real-time monitoring system, for landslide dams occurring in mountain valleys. Our work can be a starting point to raise awareness in the community.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3