Seismic Monitoring and Geomorphic Impacts of the Catastrophic 2018 Baige Landslide Hazard Cascades in the Tibetan Plateau

Author:

Zhang Zhen12ORCID,Tan Yen Joe1ORCID,Walter Fabian3,He Siming2ORCID,Chmiel Małgorzata34ORCID,Su Jinrong5

Affiliation:

1. Earth and Environmental Sciences Programme Faculty of Science The Chinese University of Hong Kong Hong Kong S.A.R. China

2. Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu China

3. Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland

4. Géoazur, Observatoire de la Côte d'Azur Université Côte d'Azur, CNRS, IRD Sophia‐Antipolis France

5. Earthquake Monitoring Center Sichuan Earthquake Administration Chengdu China

Abstract

AbstractSurface hazards can form hazard cascades which expand their reach. However, our understanding of their complex dynamics and ability to mitigate their impacts remain limited. In 2018, two landslides dammed the Jinsha River in the Tibetan plateau and formed landslide‐dammed lakes. Subsequent dam breaches prompted the evacuation of >120,000 people. An early warning system for floods using a regional seismic network has been proposed on the basis of catastrophic floods having been detected ∼100 km away, with seismic energy proportional to discharge. Surprisingly, we find that this catastrophic outburst flood was undetectable beyond a few kilometers, with peak seismic energy preceding peak discharge. We propose that river channel stability also controls seismic energy generation and should be considered for accurate monitoring of catastrophic floods. In contrast, we find that the various processes during dam breach can be well‐characterized seismically further away and provide warning ∼60 min before discharge exceeds monsoon flood levels. We also show that numerical modeling of dam breaches which typically lacks in situ measurements can benefit from incorporating seismic data as constraints. Finally, we show that this event drastically increased sediment fluxes ∼670 km downstream for years and may significantly reduce the capacity of hydropower plants. Our results reveal ways to improve early warning of catastrophic outburst floods and the need to consider surface hazards' long‐term impact when managing infrastructure in mountainous regions.

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3