Abstract
AbstractThere is a rich of electric phenomena ubiquitously existing in novel quantum materials and advanced electronic devices. Microscopic understanding of the underlying physics relies on the sensitive and quantitative measurements of the electric field, electric current, electric potential, and other related physical quantities with a spatial resolution down to nanometers. Combined with a scanning probe microscope (SPM), the emergent quantum sensors of atomic/nanometer size provide promising platforms for imaging various electric parameters with a sensitivity beyond a single electron/charge. In this perspective, we introduce the working principle of such newly developed technologies, which are based on the strong sensitivity of quantum systems to external disturbances. Then we review the recent applications of those quantum sensors in nanoscale electric sensing and imaging, including a discussion of their privileges over conventional SPM techniques. Finally, we propose some promising directions for the future developments and optimizations of quantum sensors in nanoscale electric sensing and imaging.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
New Cornerstone Science Foundation
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献