Large positive magnetoresistance and high mobility in topological insulator candidate LaP

Author:

Wu Desheng,Luo Jianlin

Abstract

AbstractWe reported herein the single crystal growth and the comprehensive study of basic physical properties including electronic transport, magnetic, specific heat of topological insulator candidate LaP. Single crystal LaP of rock salt type structure was synthesized by Sn flux method. Under low temperature and high magnetic field of $T= 2$ T = 2  K and $B= 9$ B = 9 T, large positive magnetoresistance (LMR) of 500% was discovered. The Hall effect measurements show that the conduction carriers are dominated by holes among the temperature range from 300 K to 2 K, the carrier concentration $n_{h} =4.94\times 10^{19}$ n h = 4.94 × 10 19 cm−3 and $n_{e} =5.02\times 10^{16}$ n e = 5.02 × 10 16 cm−3 and the mobility of LaP reached as high as $\mu _{h}=1.57\times 10^{4}$ μ h = 1.57 × 10 4 cm2 V−1 S−1 and $\mu _{e} = 1.55\times 10^{3}$ μ e = 1.55 × 10 3 cm2 V−1 S−1 obtained at 2 K, which can be explained by multiband model physics like other topological quantum material systems with large MR. LaP shows diamagnetism over a wide temperature range from 2 K to 300 K without any magnetic phase transition by susceptibility measurements. No evidence of phase transitions from 2 K to 300 K was observed in the specific heat measurement. The electronic specific heat coefficient is obtained 0.538 m J mol−1 K−2 for LaP single crystal, which responds to a small electron density state near the Fermi level. Our results would be helpful in renewing interest in studying emergent phenomena arisen from topological semimetals. LaP offers a platform for understanding the interactions between large magnetoresistance, high mobility and topological band structure.

Funder

National Key Research and Development Program of China

ational Natural Science Foundation of China

Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences

Postdoctoral Research Foundation of China

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3