1. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: In ECCV, pp. 404–417 (2006). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2512
2. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: Proceedings of the 11th European Conference on Computer vision: Part IV, ECCV’10, pp. 778–792. Springer-Verlag, Berlin, Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1888089.1888148
3. Carvalho, A., Rebello, J., Sagrilo, L., Camerini, C., Miranda, I.: Mfl signals and artificial neural networks applied to detection and classification of pipe weld defects. Ndt & E Int. 39(8), 661–667 (2006)
4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893 (2005). http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1467360&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1467360
5. Di, L., Yonglun, S., Feng, Y.: Online monitoring of weld defects for short-circuit gas metal arc welding based on the self-organizing feature map neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 5, pp. 239–244 (2000)