Efficient Defect Classification Using Few-Shot Image Generation and Self-Attention Fused Convolution Features

Author:

Zhang Yingjie1,Yang Zhenwei1,Xu Yue1,Ai Yibo12,Zhang Weidong12ORCID

Affiliation:

1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

2. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China

Abstract

Although deep learning has been proven to significantly outperform most traditional methods in the classification of large-scale balanced image datasets, collecting enough samples for defect classification is extremely time-consuming and costly. In this paper, we propose a lightweight defect classification method based on few-shot image generation and self-attention fused convolution features. We constructed a 4-class dataset using welding seam images collected from a solar cell module packaging production line. To address the issue of limited defect samples, especially for classes with less than 10 images, we implemented two strategies. Geometric enhancement techniques were first used to extend the defective images. Secondly, multi-scale feature fusion Generative Adversarial Networks (GANs) were utilized to further enhance the dataset. We then performed the feature-level fusion of convolution neural networks and self-attention networks, achieving a classification accuracy of 98.19%. Our experimental results demonstrate that the proposed model performs well in small sample defect classification tasks. And, it can be effectively applied to product quality inspection tasks in industrial production lines.

Funder

National Natural Science Foundation of China

Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3