Gearbox Fault Detection Using Real Coded Genetic Algorithm and Novel Shock Response Spectrum Features Extraction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials
Link
http://link.springer.com/content/pdf/10.1007/s10921-013-0208-6.pdf
Reference33 articles.
1. Yang, H., Mathew, J., Ma, L.: Fault diagnosis of rolling element bearings using basis pursuit. Mech. Syst. Signal Process. 19(2), 341–356 (2005)
2. Rosmaini, A., Kamaruddin, S.: An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012)
3. Wanga, H., Chen, P.: Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Comput. Ind. Eng. 60(4), 511–518 (2011)
4. Amarnath, M., Chandramohan, S., Seetharaman, S.: Experimental investigations of surface wear assessment of spur gear teeth. J. Vib. Control 18(7), 1009–1024 (2011)
5. Jiang, R., Yu, J., Makis, V.: Optimal Bayesian estimation and control scheme for gear shaft fault detection. Comput. Ind. Eng. 63(4), 754–762 (2012)
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Feature Selection Committee Method Using Empirical Mode Decomposition for Multiple Fault Classification in a Wind Turbine Gearbox;Journal of Nondestructive Evaluation;2023-09-19
2. A Feature Selection Committee Method Using Empirical Mode Decomposition for Multiple Fault Classification in a Wind Turbine Gearbox;2023-03-02
3. An integrated condition monitoring scheme for health state identification of a multi-stage gearbox through Hurst exponent estimates;Structural Health Monitoring;2022-05-26
4. Application of vibration analysis using time-frequency analysis to detect and predict mechanical failure during the nut manufacturing process;Advances in Mechanical Engineering;2022-02
5. Gear pitting severity level identification using binary segmentation methodology;Structural Control and Health Monitoring;2019-12-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3