Benchmarking conventional and machine learning segmentation techniques for digital rock physics analysis of fractured rocks

Author:

Reinhardt MarcelORCID,Jacob Arne,Sadeghnejad Saeid,Cappuccio Francesco,Arnold Pit,Frank Sascha,Enzmann Frieder,Kersten Michael

Abstract

AbstractImage segmentation remains the most critical step in Digital Rock Physics (DRP) workflows, affecting the analysis of physical rock properties. Conventional segmentation techniques struggle with numerous image artifacts and user bias, which lead to considerable uncertainty. This study evaluates the advantages of using the random forest (RF) algorithm for the segmentation of fractured rocks. The segmentation quality is discussed and compared with two conventional image processing methods (thresholding-based and watershed algorithm) and an encoder–decoder network in the form of convolutional neural networks (CNNs). The segmented images of the RF method were used as the ground truth for CNN training. The images of two fractured rock samples are acquired by X-ray computed tomography scanning (XCT). The skeletonized 3D images are calculated, providing information about the mean mechanical aperture and roughness. The porosity, permeability, flow fields, and preferred flow paths of segmented images are analyzed by the DRP approach. Moreover, the breakthrough curves obtained from tracer injection experiments are used as ground truth to evaluate the segmentation quality of each method. The results show that the conventional methods overestimate the fracture aperture. Both machine learning approaches show promising segmentation results and handle all artifacts and complexities without any prior CT-image filtering. However, the RF implementation has superior inherent advantages over CNN. This method is resource-saving (e.g., quickly trained), does not need an extensive training dataset, and can provide the segmentation uncertainty as a measure for evaluating the segmentation quality. The considerable variation in computed rock properties highlights the importance of choosing an appropriate segmentation method.

Funder

Bundesministerium für Wirtschaft und Energie

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3