The marble sculptures of General Bülow and Scharnhorst in Berlin: comparative, non-destructive analysis of the weathering state after 12 years of exposure

Author:

Menningen J.ORCID,Siegesmund S.,Krompholz R.,Rieffel Y.

Abstract

AbstractAfter almost 200 years of exposure, the monuments of General Scharnhorst and Bülow have been analysed by means of ultrasound. Both sculptures are made of Carrara marble, both sculptures have been exposed to the same environmental influences and both sculptures are, based on the results of the ultrasonic measurements, in alarming conditions. This statement can be made because of the data of three different measurement investigations within the last 12 years. In this short exposure time, the already low velocities have been reduced by 16.2% and 14.7%. The very low average velocity of 2.8 km/s for the sculpture of General Bülow and a slightly higher average velocity of 3.2 km/s for the Scharnhorst sculpture indicate that both sculptures are in a poor condition, even though a protective winter shelter has been used since 2004. Comparing tomographic velocity measurements performed in 2006 with the measurements made in 2018 was possible and showed that even areas with a thickness up to 90 cm show alarming low ultrasonic velocities down to 2.6 km/s. Even if the circumstances for both sculptures have been the same, they differ in their weathering state. The careful and transparent documentation of all measurements was in this context the most important aspect for the comparative studies. Irregularities in their weathering behaviour of the two statues can be distinguished, allowing an in-depth analysis of the deterioration of the marble.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3