Evaluating controls on potentially toxic element release in circum-neutral mine water: a case study from the abandoned Pb–Zn mines of Leadhills and Wanlockhead, South of Scotland, United Kingdom

Author:

Chukwura Uche O.ORCID,Hursthouse Andrew S.ORCID

Abstract

AbstractHistoric sulphidic Pb–Zn mining catchments at Leadhills and Wanlockhead, in the south of Scotland, UK have a legacy of mining of PbS (galena) and ZnS (sphalerite) from the twelfth century to the 1930s. The mining activities created tailing piles, ponds, adits and contaminated soils that contribute leaching and surface runoff of potentially toxic elements, particularly lead (Pb), which impact on the surface water and groundwater and are rapidly diluted in the wider catchment area. Studies by environmental regulators have shown that Pb, Cd and Zn in water can locally exceed the Environmental Quality Standards (EQS), particularly at Leadhills. To evaluate geochemical controls on release, 20 water sources (adits, surface water and near-surface groundwater) were sampled over four seasons (spring, summer, autumn and winter) over a 1-year period and characterized. Samples were circum-neutral pH from 6.3 to 7.9 (with average total dissolved solids < 55.0 mg/L), with no characteristics of acid mine drainage. The concentrations of PTEs in the water exceed UK EQS and WHO standards (and non-compliance on the Water Framework Directives). Geochemical modelling (GWB and PHREEQCv2) predicted mineral control on solubility which identified PbSO4 (anglesite), Fe2O3 ferric oxide (haematite), Fe3O4 (magnetite), FeCO3 (siderite), CaMg(CO3)2 (dolomite), CaCO3 (calcite) and Ca(Fe·Mg)(CO3)2 (ankerite) to be important. These were confirmed in solid phases analysed from tailings and sediments in contact with the hydrological cycle at the sites. Multivariate statistical analysis (PCA) of water samples associated with leaching through mine tailings showed strong seasonal variation with some elements (Fe, Cu, Cd, Pb, Na, Ca and Zn) with higher variance. The strong negative association of pH with soluble Zn, Cu, As, Cd and Pb highlights typical sulfide oxidation processes are taking place and supported by a positive correlation with temperature. Dissolution processes of mineral phases indicated by positive association of TDS and EC with Na, Ca and Zn. The data from PCA suggest contributions with potential for active generation of acid mine drainage and dissolution of solid phases influencing the release of PTEs into surface waters.

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3