Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators

Author:

Broedel Johannes,Dixon Lance J.

Abstract

Abstract We investigate color-kinematics duality for gauge-theory amplitudes produced by the pure nonabelian Yang-Mills action deformed by higher-dimension operators. For the operator denoted by F 3, the product of three field strengths, the existence of color-kinematic dual representations follows from string-theory monodromy relations. We provide explicit dual representations, and show how the double-copy construction of gravity amplitudes based on them is consistent with the Kawai-Lewellen-Tye relations. It leads to the amplitudes produced by Einstein gravity coupled to a dilaton field ϕ, and deformed by operators of the form ϕR 2 and R 3. For operators with higher dimensions than F 3, such as F 4-type operators appearing at the next order in the low-energy expansion of bosonic and superstring theory, the situation is more complex. The color structure of some of the F 4 operators is incompatible with a simple color-kinematics duality based on structure constants f abc, but even the color-compatible F 4 operators do not admit the duality. In contrast, the next term in the α expansion of the superstring effective action — a particular linear combination of D 2 F 4 and F 5-type operators — does admit the duality, at least for amplitudes with up to six external gluons.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergence of String Monodromy in Effective Field Theory;Physical Review Letters;2024-08-26

2. Spinning binary dynamics in cubic effective field theories of gravity;Journal of High Energy Physics;2024-08-22

3. The duality between color and kinematics and its applications;Journal of Physics A: Mathematical and Theoretical;2024-08-08

4. Higher-derivative relations between scalars and gluons;Journal of High Energy Physics;2024-07-23

5. FiniteFieldSolve: Exactly solving large linear systems in high-energy theory;Computer Physics Communications;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3