Abstract
Abstract
We study the binary dynamics of two Kerr black holes with arbitrary spin vectors in the presence of parity-even and parity-odd cubic deformations of gravity. We first derive the tree-level Compton amplitudes for a Kerr black hole in cubic gravity, which we then use to compute the two-to-two amplitudes of the massive bodies to leading order in the deformation and the post-Minkowskian expansion. The required one-loop computations are performed using the leading singularity approach as well as the heavy-mass effective field theory (HEFT) approach. These amplitudes are then used to compute the leading-order momentum and spin kick in cubic gravity in the KMOC formalism. Our results are valid for generic masses and spin vectors, and include all the independent parity-even and parity-odd cubic deformations of Einstein-Hilbert gravity. We also present spin-expanded expressions for the momentum and spin kicks, and the all-order in spin deflection angle in the case of aligned spins.
Publisher
Springer Science and Business Media LLC
Reference160 articles.
1. G. Travaglini et al., The SAGEX review on scattering amplitudes, J. Phys. A 55 (2022) 443001 [arXiv:2203.13011] [INSPIRE].
2. J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett. 72 (1994) 2996 [gr-qc/9310024] [INSPIRE].
3. D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].
4. N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].
5. N.E.J. Bjerrum-Bohr et al., Bending of Light in Quantum Gravity, Phys. Rev. Lett. 114 (2015) 061301 [arXiv:1410.7590] [INSPIRE].