A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing

Author:

Sadeghian Farnoosh,Seman Zainina,Ramli Abdul Rahman,Abdul Kahar Badrul Hisham,Saripan M-Iqbal

Abstract

Abstract Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed segmentation framework that consists of an integration of several digital image processing algorithms. Twenty microscopic blood images were tested, and the proposed framework managed to obtain 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. The results indicate that the proposed framework is able to extract the nucleus and cytoplasm region in a WBC image sample.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Reference17 articles.

1. Ritter N, Cooper J: Segmentation and border identification of cells in images of peripheral blood smear slides. Proceedings of the Thirtieth Australasian Conference on Computer Science. 2007, 62: 161-169.

2. Ongun G, Halici U, Leblebicioglu K, Atalay V, Beksac M, Beksac S: Feature extraction and classification of blood cells for an automated differential blood count system. Neural Networks. Proceedings. IJCNN '01. International Joint Conference on. 2001, 4: 2461-2466.

3. Jiang Kan, Liao Qing-Min, Dai Sheng-Yang: A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. Machine Learning and Cybernetics, 2003 International Conference on. 2003, 5: 2820-2825.

4. Dorini LB, Minetto R, Leite NJ: White blood cell segmentation using morphological operators and scale-space analysis. SIBGRAPI '07: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing. 2007

5. Scotti F: Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005. 2005, CIMSA, 96-101.

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical Analysis of Features for Detecting Leukemia;International Journal of Online and Biomedical Engineering (iJOE);2024-07-16

2. Classification of white blood cells (leucocytes) from blood smear imagery using machine and deep learning models: A global scoping review;PLOS ONE;2024-06-17

3. Artificial intelligence approach for diagnosing banana crop diseases through image processing framework: an insightful survey journey from farmers field to digital cloud;Archives of Phytopathology and Plant Protection;2024-02-07

4. Intelligent Computing Approach for Leukocyte Identification;Computational Intelligence Methods and Applications;2024

5. Automatic detection of white blood cancer from bone marrow microscopic images using Convolutional Neural Networks;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3