Predictor bias in genomic and phenomic selection

Author:

Dallinger Hermann GregorORCID,Löschenberger Franziska,Bistrich Herbert,Ametz Christian,Hetzendorfer Herbert,Morales Laura,Michel Sebastian,Buerstmayr Hermann

Abstract

Abstract Key message NIRS of wheat grains as phenomic predictors for grain yield show inflated prediction ability and are biased toward grain protein content. Abstract Estimating the breeding value of individuals using genome-wide marker data (genomic prediction) is currently one of the most important drivers of breeding progress in major crops. Recently, phenomic technologies, including remote sensing and aerial hyperspectral imaging of plant canopies, have made it feasible to predict the breeding value of individuals in the absence of genetic marker data. This is commonly referred to as phenomic prediction. Hyperspectral measurements in the form of near-infrared spectroscopy have been used since the 1980 s to predict compositional parameters of harvest products. Moreover, in recent studies NIRS from grains was used to predict grain yield. The same studies showed that phenomic prediction can outperform genomic prediction for grain yield. The genome is static and not environment dependent, thereby limiting genomic prediction ability. Gene expression is tissue specific and differs under environmental influences, leading to a tissue- and environment-specific phenome, potentially explaining the higher predictive ability of phenomic prediction. Here, we compare genomic prediction and phenomic prediction from hyperspectral measurements of wheat grains for the prediction of a variety of traits including grain yield. We show that phenomic predictions outperform genomic prediction for some traits. However, phenomic predictions are biased toward the information present in the predictor. Future studies on this topic should investigate whether population parameters are retained in phenomic prediction as they are in genomic prediction. Furthermore, we find that unbiased phenomic prediction abilities are considerably lower than previously reported and recommend a method to circumvent this issue.

Funder

Österreichische Forschungsförderungsgesellschaft

Universität für Bodenkultur Wien

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3