Feature engineering and parameter tuning: improving phenomic prediction ability in multi-environmental durum wheat breeding trials

Author:

Meyenberg CarinaORCID,Braun VincentORCID,Longin Carl Friedrich HorstORCID,Thorwarth PatrickORCID

Abstract

Abstract Key Message Optimized phenomic selection in durum wheat uses near-infrared spectra, feature engineering and parameter tuning. Our study reports improvements in predictive ability and emphasizes customized preprocessing for different traits and models. Abstract The success of plant breeding programs depends on efficient selection decisions. Phenomic selection has been proposed as a tool to predict phenotype performance based on near-infrared spectra (NIRS) to support selection decisions. In this study, we test the performance of phenomic selection in multi-environmental trials from our durum wheat breeding program for three breeding scenarios and use feature engineering as well as parameter tuning to improve the phenomic prediction ability. In addition, we investigate the influence of genotype and environment on the phenomic prediction ability for agronomic and quality traits. Preprocessing, based on a grid search over the Savitzky–Golay filter parameters based on 756,000 genotype best linear unbiased estimate (BLUE) computations, improved the phenomic prediction ability by up to 1500% (0.02–0.3). Furthermore, we show that preprocessing should be optimized depending on the dataset, trait, and model used for prediction. The phenomic prediction scenarios in our durum breeding program resulted in low-to-moderate prediction abilities with the highest and most stable prediction results when predicting new genotypes in the same environment as used for model training. This is consistent with the finding that NIRS capture both the genotype and genotype-by-environment $$(G\times E)$$ ( G × E ) interaction variance.

Funder

Deutsche Forschungsgemeinschaft

Bundesanstalt für Landwirtschaft und Ernährung

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3