The Segmentation of Multiple Types of Uterine Lesions in Magnetic Resonance Images Using a Sequential Deep Learning Method with Image-Level Annotations

Author:

Cui Yu-meng,Wang Hua-li,Cao Rui,Bai Hong,Sun Dan,Feng Jiu-xiang,Lu Xue-feng

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Dalian Medical Science Research Program

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Berek JS, Matias-Guiu X, Creutzberg C, Fotopoulou C, Gaffney D, Kehoe S, Lindemann K, Mutch D, Concin N; Endometrial Cancer Staging Subcommittee, FIGO Women's Cancer Committee. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet. 2023; 162 (2): 383–394. https://doi.org/10.1002/ijgo.14923.

2. Rahimpour M, Saint Martin MJ, Frouin F, Akl P, Orlhac F, Koole M, Malhaire C. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Eur Radiol. 2023; 33 (2): 959-969. https://doi.org/10.1007/s00330-022-09113-7.

3. Opfer R, Krüger J, Spies L, Ostwaldt AC, Kitzler HH, Schippling S, Buchert R. Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability. Eur Radiol. 2023; 33 (3): 1852-1861. https://doi.org/10.1007/s00330-022-09170-y.

4. Chen C, Zhang T, Teng Y, Yu Y, Shu X, Zhang L, Zhao F, Xu J. Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network. Eur Radiol. 2023; 33 (4): 2665-2675. https://doi.org/10.1007/s00330-022-09216-1.

5. Jávorszky N, Homonnay B, Gerstenblith G, Bluemke D, Kiss P, Török M, Celentano D, Lai H, Lai S, Kolossváry M. Deep learning-based atherosclerotic coronary plaque segmentation on coronary CT angiography. Eur Radiol. 2022; 32 (10): 7217-7226. https://doi.org/10.1007/s00330-022-08801-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3