Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network

Author:

Chen Chaoyue,Zhang Ting,Teng Yuen,Yu Yijie,Shu Xin,Zhang Lei,Zhao Fumin,Xu JianguoORCID

Abstract

Abstract Objectives To develop a U-Net-based deep learning model for automated segmentation of craniopharyngioma. Methods A total number of 264 patients diagnosed with craniopharyngiomas were included in this research. Pre-treatment MRIs were collected, annotated, and used as ground truth to learn and evaluate the deep learning model. Thirty-eight patients from another institution were used for independently external testing. The proposed segmentation model was constructed based on a U-Net architecture. Dice similarity coefficients (DSCs), Hausdorff distance of 95% percentile (95HD), Jaccard value, true positive rate (TPR), and false positive rate (FPR) of each case were calculated. One-way ANOVA analysis was used to investigate if the model performance was associated with the radiological characteristics of tumors. Results The proposed model showed a good performance in segmentation with average DSCs of 0.840, Jaccard of 0.734, TPR of 0.820, FPR of 0.000, and 95HD of 3.669 mm. It performed feasibly in the independent external test set, with average DSCs of 0.816, Jaccard of 0.704, TPR of 0.765, FPR of 0.000, and 95HD of 4.201 mm. Also, one-way ANOVA suggested the performance was not statistically associated with radiological characteristics, including predominantly composition (p = 0.370), lobulated shape (p = 0.353), compressed or enclosed ICA (p = 0.809), and cavernous sinus invasion (p = 0.283). Conclusions The proposed deep learning model shows promising results for the automated segmentation of craniopharyngioma. Key Points • The segmentation model based on U-Net showed good performance in segmentation of craniopharyngioma. • The proposed model showed good performance regardless of the radiological characteristics of craniopharyngioma. • The model achieved feasibility in the independent external dataset obtained from another center.

Funder

West China Hospital, Sichuan University

science and technology department of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3