Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving

Author:

Pantsar MarkusORCID

Abstract

AbstractFollowing Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage in cognitive processes that make their problem solving algorithms computationally suboptimal, in contrast with the optimal algorithms studied in the computational approach. Therefore, in order to accurately model the human cognitive tasks involved in mathematical problem solving, we need to expand our methodology to also include aspects relevant to the algorithmic level. This allows us to study algorithms that are cognitively optimal for human problem solvers. Since problem solving methods are not universal, I propose that they should be studied in the framework of enculturation, which can explain the expected cultural variance in the humanly optimal algorithms. While mathematical problem solving is used as the case study, the considerations in this paper concern modeling of cognitive tasks in general.

Funder

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Logic,Philosophy

Reference87 articles.

1. Aaronson, S. (2012). Why philosophers and cognitive scientists should care about computational complexity. In J. Copeland, et al. (Eds.), Computability: Gödel, Turing, Church, and beyond. Cambridge: MIT Press.

2. Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates.

3. Anderson, M. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.

4. Ansari, D. (2012). Culture and education: New frontiers in brain plasticity. Trends in Cognitive Sciences, 16(2), 93–95.

5. Arora, S., & Barak, B. (2007). Computational complexity. A modern approach. Cambridge: Cambridge University Press.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3