Abstract
AbstractThe conducting polymer poly(3,4-ethylenedioxythiophene) (known as PEDOT) is routinely fabricated into doped thin films for investigation of its inherent properties as well as for a range of applications. Fabrication of PEDOT is often achieved via oxidative polymerisation, where the conducting polymer is polymerised and doped (oxidised) to yield a conductive polymer thin film. The oxidiser and the polymerisation temperature are two parameters that may influence the properties and performance of the resultant PEDOT thin film. In this study, the role of temperature for the chemical polymerisation of PEDOT using the oxidiser iron tosylate is investigated from a computational and experimental viewpoint. While computations of the doping energetics suggest increasing doping with increasing temperature, x-ray photoelectron spectroscopy of fabricated PEDOT thin films indicate doping is much more complicated. With the aid of computations of the spatial distribution functions for tosylate in PEDOT, experiments indicate that two different populations of tosylate anions exist in the PEDOT matrix. Their relative populations change as a function of the polymerisation temperature. Therefore, polymerisation temperature plays a critical role in tailoring the properties of PEDOT in pursuit of being fit-for-purpose for the desired application.
Funder
National Academic Infrastructure for Supercomputing in Sweden
Wallenberg Wood Science Center
Knut och Alice Wallenbergs Stiftelse
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献