Author:
Li Michael Y.,Shu Hongying
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience
Reference34 articles.
1. Asquith, B., & Bangham, C. R. M. (2007). Quantifying HTLV-I dynamics. Immunol. Cell Biol., 85, 280–286.
2. Bangham, C. R. (2000). The immune response to HTLV-I. Curr. Opin. Immunol., 12, 397–402.
3. Bangham, C. R. M. (2003). The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J. Gen. Virol., 84, 3177–3189.
4. Beretta, E., Carletti, M. et al. (2006). Stability analysis of a mathematical model of the immune response with delays. In Y. Iwasa, K. Sato, & Y. Takeuchi (Eds.), Mathematics for life science and medicine (pp. 179–208). Berlin: Springer.
5. Beretta, E., & Kuang, Y. (2002). Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33, 1144–1165.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献