U-Net-based image segmentation of the whole heart and four chambers on pediatric X-ray computed tomography

Author:

Yoshida AkifumiORCID,Kondo Yohan,Yoshimura Norihiko,Kuramoto Tatsuya,Hasegawa Akira,Kanazawa Tsutomu

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine,Radiation

Reference19 articles.

1. The Japanese Circulation Society. JCS 2018 guideline on clinical examinations for decision making of diagnosis and drug therapy in pediatric patients with congenital heart disease and cardiovascular disorder; 2018. https://www.j-circ.or.jp/old/guideline/pdf/JCS2018_Yasukochi.pdf. Accessed 18 Oct 2021.

2. Han BK, Rigsby CK, Hlavacek A, Leipsic J, Nicol ED, Siegel MJ, Bardo D, Abbara S, Ghoshhajra B, Lesser JR, Raman S, Crean AM, Society of Cardiovascular Computed Tomography, Society of Pediatric Radiology, North American Society of Cardiac Imaging. Computed tomography imaging in patients with congenital heart disease Part I: rationale and utility. an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9:475–92. https://doi.org/10.1016/j.jcct.2015.07.004.

3. Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA. Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S, editors. Medical image computing and computer-assisted intervention—MICCAI 2017. Lecture notes in computer science; 2017. https://doi.org/10.1007/978-3-319-66185-8_33.

4. Li J, Zhang R, Shi L, Wang D. Automatic whole-heart segmentation in congenital heart disease using deeply-supervised 3D FCN. In: Zuluaga M, Bhatia K, Kainz B, Moghari M, Pace D, editors. Reconstruction, segmentation, and analysis of medical images. RAMBO 2016, HVSMR 2016. Lecture notes in computer science; 2017. https://doi.org/10.1007/978-3-319-52280-7_11.

5. Li C, Tong Q, Liao X, Si W, Chen S, Wang Q, Yuan Z. APCP-NET: aggregated parallel cross-scale pyramid network for CMR segmentation. In: 16th IEEE International Symposium on Biomedical Imaging, ISBI, Venice, 2019:784–8.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep reinforcement learning architectures for automatic organ segmentation;Biomedical Signal Processing and Control;2024-04

2. Deep neural network architectures for cardiac image segmentation;Artificial Intelligence in the Life Sciences;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3