1. Fully convolutional networks for semantic segmentation;Long,2015
2. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” arXiv:1606.06650 [cs], Jun. 2016, Accessed: Aug. 15, 2020. [Online]. Available: http://arxiv.org/abs/1606.06650.
3. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation,” arXiv:1606.04797 [cs], Jun. 2016, Accessed: Aug. 15, 2020. [Online]. Available: http://arxiv.org/abs/1606.04797.
4. I. J. Goodfellow et al., “Generative Adversarial Networks,” arXiv:1406.2661 [cs, stat], Jun. 2014, Accessed: Sep. 03, 2020. [Online]. Available: http://arxiv.org/abs/1406.2661.
5. Recurrent residual U-Net for medical image segmentation;Alom;J. Med. Imag.,2019