Ore grade estimation using the imperialist competitive algorithm (ICA)
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s12517-021-07808-7.pdf
Reference23 articles.
1. Afeni TB, Akeju VO, Aladejare AE (2021) A comparative study of geometric and geostatistical methods for qualitative reserve estimation of limestone deposit. Geosci Front 12(1):243–253. https://doi.org/10.1016/j.gsf.2020.02.019
2. Ataei M, Osanloo M (2003) Determination of optimum cutoff grades of multiple metal deposits by using the Golden Section search method. J South Afr Inst Min Metall 103(8):493–499
3. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, pp 4661–4667. https://doi.org/10.1109/CEC.2007.4425083
4. Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(7):795–799. https://doi.org/10.1016/0098-3004(96)00021-0
5. Biabangard-Oskouyi A, Atashpaz-Gargari E, Soltani N, Lucas C (2009) Application of imperialist competitive algorithm for materials property characterization from sharp indentation test. Int J Eng Syst Simul 10(1):11–12
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluation method of ore grade estimation effectiveness;PLOS ONE;2024-09-12
2. Predicting axial-bearing capacity of fully grouted rock bolting systems by applying an ensemble system;Soft Computing;2024-08-02
3. Predicting grout’s uniaxial compressive strength (UCS) for fully grouted rock bolting system by applying ensemble machine learning techniques;Neural Computing and Applications;2024-07-26
4. Conclusion and General Remarks for Estimating Ore Grade;Estimating Ore Grade Using Evolutionary Machine Learning Models;2023
5. Estimating Iron Ore Grade;Estimating Ore Grade Using Evolutionary Machine Learning Models;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3