Abstract
This study proposes a new method to evaluate the effectiveness of orebody grade estimations, drawing upon the analysis of existing evaluation methods for grade estimation. This new approach addresses factors such as uneven sampling and asymmetric estimation range, which are challenging to overcome with existing evaluation techniques. The core principle of this method involves documenting how frequently individual samples are used during grade estimation and calculating the total distance weights for each sample. Subsequently, the usage frequency and total weight of the samples are standardized, and these standardized values are weighted based on the sample grades. A comparison is made between the weighted sample grades and the estimated grades, with the closeness between the two serving as a metric for assessing the effectiveness of the estimation. This study compares the new evaluation method to the direct comparison and cross-validation methods, examining the effectiveness of grade estimation using the inverse distance weighting (IDW) method. The findings revealed that: (1) The new evaluation method theoretically accounts for the systematic deviation between the statistical measures of estimated and sample grades resulting from uneven sample distribution, offering a fresh approach for enhancing the effectiveness of orebody grade estimation. (2) In the grade estimation of experimental Fe samples, the frequency of usage and the sum of distance weights were unequal. This inequality significantly contributes to the systematic deviation between the estimated and sample grades. (3) Comparing the new evaluation method to others confirms the stability and reliability of the new approach for evaluating the effectiveness of orebody grade estimation. This novel method demonstrates theoretical advantages and practical utility. (4) The deviation between the estimated grades and the statistical results of sample grades is influenced by the distribution pattern of sample grades, the spatial relationship between samples and estimation blocks, and the inherent systematic error associated with the IDW method. This systematic error cannot be overlooked.
Funder
The Ph.D. Research Startup Foundation of Anyang Institute of Technology
The Technical Support Project for Verification of Strategic Mineral Target Areas in Eastern China
The Anyang Science and Technology Planning Project
Publisher
Public Library of Science (PLoS)
Reference21 articles.
1. An Integrated Geo-Statistical Methodology for an Optimum Resource Estimation of Angouran Underground Mine;Mohammad Rezaei;Journal of Mining and Environment,2023
2. The influence of distance weight on the inverse distance weighted method for ore-grade estimation;Zhan-Ning Liu;Scientific Reports,2021
3. A new method for estimating ore grade based on sample length weighting;Zhan-Ning Liu;Scientific Reports,2023
4. Spatial Interpolation of Soil. Temperature and Water Content in the Land-Water Interface Using Artificial Intelligence;Imanian Hanifeh;Water,2023
5. Utilization and Verification of Inverse Distance Weighting (IDW) Interpolation Technology for Predicting Solar Radiation of Photovoltaic System;Doo-Sung Choi;KIEAE Journal,2022