Distinguishing Turkish pine honey from multi-floral honey through MALDI-MS-based N-glycomics and machine learning

Author:

Masri Saad,Aksoy Sena,Duman Hatice,Karav Sercan,Kayili Haci MehmetORCID,Salih Bekir

Abstract

AbstractHoney, a multifaceted blend of sugars, amino acids, vitamins, proteins, and minerals, exhibits compositional variability dependent upon the floral source. While previous studies have attempted to categorize honey, the use of glycomic profiles for honey classification remains an unexplored avenue. This investigation seeks to establish a methodology for distinguishing honey types, specifically multi-floral and pine honey, employing mass spectrometry-based glycomic analysis in tandem with machine learning. In this search, seven samples of pine honey and eight samples of multi-floral honey were obtained from diverse regions of Turkey. Subsequently, the proteins within these honey samples were extracted, and glycans were enzymatically released. The released glycans were labeled with 2-aminobenzoic acid (2-AA) and subjected to analysis via matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The glycan profiles of pine and multi-floral honey were determined through these analytical procedures, revealing a total of 76 distinct N-glycan structures. Among these, 13 N-glycan profiles consistently established at high levels across experimental replicates and were incorporated in subsequent analyses. Following the quantification of individual glycan abundances, statistically significant differences in glycan profiles were determined. Notably, N-glycans Hex5HexNAc2, Hex4HexNAc3, and Hex5HexNAc3 displayed considerable differences. Using the 13 N-glycan profiles, an accuracy rate of 93.5% was obtained from machine learning analysis, which increased to 100% when incorporating the identified significantly changed glycans. The most productive models were identified as “subspace and fine k-nearest neighbors (KNN).” The findings underscore the potential of mass spectrometry-based glycomics in conjunction with machine learning as a robust tool for precise honey type classification and its prospective utility in quality control and honey product authentication.

Funder

Bilim, Sanayi ve Teknoloji Bakanliği

Karabuk University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3