Author:
Domcke Valerie,Harigaya Keisuke,Mukaida Kyohei
Abstract
Abstract
We consider the transfer of a U(1) charge density between Bose-Einstein condensates of complex scalar fields coupled to a thermal bath, focusing on the case of a homogeneous Affleck-Dine field transmitting the charge stored in its angular motion to an axion field. We demonstrate that in the absence of additional symmetries this charge transfer, aided by cosmic expansion as well as the thermal effective potential of the Affleck-Dine field, can be very efficient. The charge redistribution between the scalar fields becomes possible if the interactions with the thermal bath break the original U(1) × U(1) symmetry down to a single U(1) symmetry; the charge distribution between the two fields is then determined by minimizing the free energy. We discuss implications for cosmological setups involving complex scalars, with applications to axion dark matter, baryogenesis, kination domination, and gravitational wave production.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献