Diraxiogenesis

Author:

Berbig MaximilianORCID

Abstract

Abstract The family of Dirac Seesaw models offers an intriguing alternative explanation for the smallness of neutrino masses without necessarily requiring microscopic lepton number violation, when compared to the more familiar class of Majorana Seesaws. A global U(1)D symmetry, that is explicitly broken by a higher dimensional scalar operator, ensures that the right handed neutrino does not couple directly to the Standard Model like Higgs and an exact gauged or residual lepton number symmetry prohibits all Majorana masses. We demonstrate that all three Dirac Seesaws possess a Pseudo-Nambu-Goldstone boson associated with the U(1)D symmetry, that we call the Diraxion, whose cosmological dynamics have so far been left unexplored. Furthermore we illustrate that a Dirac-Leptogenesis version of the recently proposed Lepto-Axiogenesis scenario can be realized in this class of models, leading to a unified origin of the observed baryon asymmetry and dark matter relic abundance. Explaining only the baryon asymmetry can lead to potentially observable amounts of right handed neutrino dark radiation with ∆Neff. ≲ 0.028. On the other hand, if we only fix the dark matter abundance via the kinetic misalignment mechanism, this set-up could lead to detectable signatures in proposed cosmic neutrino background experiments via decays of eV-scale Diraxions to neutrinos. Here there is no domain wall problem, since topological defects decay to a subleading fraction of relic Diraxions. A key ingredient of all Axiogenesis scenarios is the dynamics of relatively light scalar called the Saxion, that in our case has a mass at the GeV-scale and which might reveal itself in heavy meson decays or collider searches. Our setup predicts isocurvature perturbations in baryons, dark matter and dark radiation sourced by fluctuations of the Saxion.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3